
Production Support Use Case 
The term Production Support in this context refers to the work done by applications staff to support 

the successful completion of production batch processing, typically overnight, that forms a vital part 

of an application. In many sites this batch work must be completed by a certain cut-off time to allow 

the online system to be fully functional and ready for another day of activity. While there may be a 

move towards continuous processing and away from the online/batch split, there will always be 

batch jobs that need to be fixed quickly. Those that support these important batch processes 

provide a vital service to the organisations that employ them. This chapter shows how the tools and 

processes of the Optimised Lifecycle can assist Production Support staff address the issues they face.  

 

Production Support Process Flow 
Some draw the analogy between the Production Support role in an Information Technology 

Department and the Triage principles employed in the Emergency Room of a Hospital. While it may 

not be a matter of life and death the analogy holds true when considering the prioritisation of the 

work to be done.  The issues need to be brought to the attention of those that are best equipped to 

deal with it. Tasks need to be assessed and prioritised based on their urgency. Jobs on the critical 

path of the batch stream need to be fixed before jobs that are not. Also it is also important to 

capture information at the time of the ABEND that will be of value in both dealing with the 

immediate issue and also later when the root cause of the problem is investigated. Once the 

immediate concerns are dealt with effectively, the root cause and its solution can be developed, 

tested and implemented.    



 

(Figure 1) 

The Scenario  
In this case a batch job has abended and a call has been placed to the on-call production support 

applications programmer. This is the first of the eight phases that need to occur from this point - 



Notify. Notification can be as sophisticated as automation software sending an SMS to on-call staff 

alerting them to a failure. It could be as simple as a Computer Operator on shift reacting to a non-

scrolling message on the system console, issued by the failing job. The main thing is that the 

notification happens quickly to allow maximum time for the next three steps.  

Assess, Fix and Re-run 
The Programmer is faced with S0CB ABEND in subprogram CLCLBCST (Figure 2) of TRMTSRCH. The 

joblog shows that Fault Analyzer has captured the ABEND information. Fault Analyzer lists the 

following handy information in the job log: 

 Program and Module  and Source Line number 

 ABEND information including a short description (Decimal-Divide Exception). 

 The Fault Id and the History File where the abend information can be found 

Note: To gain maximum information from the tools insure programs are prepared with the 

recommended options. Refer to the production documentation for these settings 

 

(Figure 2) 

To view the Fault Analyzer report the programmer should switch to the Fault Analyzer perspective. 

As detailed in the PD Tools chapter, the history file displayed in the joblog is added via the context 

menu (Figure 3) 



 
(Figure 3) 

The Fault Analyzer Report (Figure 4) will show the source line that immediately preceded the failure. 

In this case the divisor in the Compute statement on line 54, PATIENT-COPAY has a value of 0. 

Hovering over PATIENT-COPAY in RDz would tell the programmer the field is part of the linkage 

section of the program so is passed to the program from the calling program – in this case 

TRMTSRCH. 



 

(Figure 4) 

The programmer feels they can insert code into the program to check if the field is 0 and move a 

valid value to it. The programmer consults the application documentation to discover default co-

payment factor is 100 but that some states will have a lower factor set.  The programmer decides to 

add a test for the field being zero and if so move 100 to the field to eliminate the S0CB. 

The code is added and the program is recompiled to a temporary library. The production job is re-

run successfully from the temporary library. This allows down-stream processing to complete within 

the window allowed for batch processing under the service level agreement in place. 

100-CALC-LAB-COSTS.                                    

**  Emergency Fix to allow batch to complete            

     IF PATIENT-COPAY = ZERO                            

            MOVE +100 TO PATIENT-COPAY.                   

     COMPUTE TEMP-COST =                                

          (  VENIPUNCTURE-COSTS + ANCILLARY-COSTS +     

           ( PROCEDURE-BASE-COST * 2.2 ) )              

           * (REIMBURSE-PCT / PATIENT-COPAY  ). 

Analyse Root Cause and Develop Solution 
At the next opportunity an analyst within the applications area supporting the batch job, needs to 

determine the root cause. This involves trying to understand how and what sets the contents of the 

PATIENT-COPAY field within the patient master file. RAA can be used to determine where a field is 



modified within a set of application components including programs and copybooks. Also RAA can 

be integrated with RDz so that the searches can be done from within an RDz perspective. Right click 

on the project that contains the elements that are to be searched. Then from within the search 

window click on the RAA Integration Tab (Figure 5). Enter the field name, PATIENT-COPAY in the 

search string, specify to search for a Data Element and limit the search to modifications of the data 

element. 

 

(Figure 5) 

The search reveals a number of references. Each reference needs to be investigated. A modification 

within PATSRCH shows that another field called COPAY from the PATIENT-MASTER-REC (Patient 

Master File) is used to populate PATIENT-COPAY. 

       300-CALC-EQUIP-COSTS. 

           MOVE "300-CALC-EQUIP-COSTS" TO PARA-NAME. 

           MOVE PATIENT-ID IN INPATIENT-DAILY-REC TO 

             PATIENT-KEY, 

               PATIENT-ID IN CALC-COSTS-REC. 

           READ PATMSTR INTO PATIENT-MASTER-REC. 

           MOVE COPAY  TO PATIENT-COPAY.              

 

The task now is to trace how COPAY in PATIENT-MASTER-REC is populated within the entire 

application. Again the integration between RDz and RAA (RAAi) can be used to complete an 



intelligent search of the application. In a similar manner to the search above for PATIENT-COPAY, the 

analyst searches for modifications of COPAY. This reveals it is set to STATE-FACTOR which in turn is 

based on an evaluation of the EMP-STATE field (Figure 6). 

 

(Figure 6) 

The analyst notices two things from looking at the code excerpt and from hovering over the field: 

 The list of State codes is not exhaustive and there is no WHEN OTHER clause on the Evaluate 

to catch unexpected values. 

 The initial value of STATE-FACTOR is set to 0 in the working-storage. 

This means that if a State code other than those listed explicitly in the Evaluate statement, COPAY 

will be left at the initial value of 0 rather than the accepted default value of 100. To test the theory 

that there are values of EMP-STATE possible that are not catered for, RDz and its Debug perspective 

are used. Once in the debug session the following is done to setup for the test: 

 A breakpoint is set at the following statement: 

MOVE STATE-FACTOR  TO COPAY IN PATIENT-MASTER-REC. 

 Highlight the fields we are interested in (EMP-STATE and STATE-FACTOR), right click and 

choose to monitor them. In this way we can see their values change as the program is 

debugged. 



Figure 7 shows the results after a couple of records are processed in the debug session. Note the 

values of EMP-STATE and STATE-FACTOR in the Monitor window.   

 

(Figure 7) 

EMP-STATE had a value of “IL”. This is not catered for in the Evaluate statement so at the 

breakpoint, just before COPAY in PATIENT-MASTER-REC is modified, STATE-FACTOR is still at its 

initial and invalid value of 0. 

It is good practice with EVALUATE statements to always include a WHEN OTHER clause. This makes 

the program more resilient. While normally the addition of new states from a business perspective 

may have meant the applications area would be notified so they could make the necessary program 

changes, this does not always happen. Programs need to be written to expect the unexpected. 

 The initial intention of the application was to have a default Co-Payment factor of 100 but to allow 

for lower factors for some states. The change shown in Figure 8 is agreed upon. The change will set 

the factor to the default value of 100 but also display a warning message on the joblog. It may be 

better if these exceptions were also written to an error file but for this example we will use a display 

to the job log only. The idea is to highlight the issue so it can be followed up and addressed, rather 

than letting it keep occurring and causing unforeseen issues as it did in this scenario. 

The fix will have three effects. Firstly the original intention to have a default factor set will be 

implemented and secondly it will stop any future repetition of this S0CB abend. Thirdly, the warning 

message will highlight to the applications team that a new state is now incorporated into the 

database. This will provide an opportunity to discuss the introduction of the new state with a 



business representative and ensure that the co-payment factor chosen for each is appropriate rather 

than defaulting. 

 

(Figure 8) 

Test and Implement Solution 
Implementing the solution involves following the development and testing methodology adopted by 

the site in question. Examples of the methodologies are discussed earlier in Section IV, including:  

traditional approaches such as the waterfall method; collaborative approaches such as the Iterative 

Approach using RUP or SCRUM; Agile Methodology which can enabled by use of a collaboration tool 

such as Relational Team Concert for z (RTCz) (Figure 9 & 10). RTCz like RAA can be integrated with 

RDz and forms an important part of IBM’s Enterprise Modernization Workbench. 



 

(Figure 9) 

 

(Figure 10) 

Irrespective of the approach, it is important to test the changes have the desired results. After 

retrieving the programs, the changes are made in a test environment. The job is run in that test 

environment using sample data and/or copies of production data. As expected it reveals a number of 

states that have been introduced to the database without changes to MSTRUPDT to ensure the 

COPAY field is correctly set (Figure 11).  



There may be more testing required before the program is migrated to production, including a 

system/integration test of the whole system to ensure this change does not have unforeseen 

consequences downstream. The other task that needs to be done at the same time the solution to 

the root cause is migrated to production, is to remove the temporary fix to a version of CLCLBCST to 

ensure the new, full solution is picked up when the suite next runs. 

 

(Figure 11) 

Summary 
This chapter has demonstrated how the tools of the Optimised Lifecycle can be used to improve the 

response to a production support ABEND. It is possible to look into these sorts of issues without the 

tools discussed and without abend analyzers such as Fault Analyzer, or third party alternatives. 

COBOL can provide a symbolic dump and if a compile listing, with appropriate options, has been 

kept it is possible to derive the failing line of code from standard module/offset ABEND information. 

Also applications staff with deep application knowledge and experience can quickly drill-down on 

issues without much help. In fact this is how production support issues were investigated and may 

still be at some sites.  

What was demonstrated in this chapter was how the tools now available and the integration 

between them can benefit those who tackle these issues on a daily basis. These Production Support 

incidents are often a stressful events for this involved that, if not addressed in a timely manner, can 

have major negative impacts to the organisations concerned. The value of the tools is that they can 



reclaim time that in the past is burned identifying the point of failure and indentifying a fix. This time 

saved can be the difference between getting systems back on track or not.  


